Organ Annotation Vignette

Preprocess

Enter the name of the organ you want to analyze.

organ_of_interest = "Liver"

We begin by loading a gene by cell matrix A, where A;; is the number of reads (or UMIs) from cell j that
aligned to gene 7. The Seurat package keeps track of matrices and coordinates derived from A together with
metadata; that information is stored in a large object called tiss. For the sake of explicitness, we describe
below many of the mathematical transformations implemented inside of Seurat.

First, we filter out cells with fewer than 500 genes or 50,000 reads. (For UMI data, we filter out cells with
fewer than 500 genes or 1,000 UMIs.)

tiss <- FilterCells(object = tiss, subset.names = c("nGene", '"nReads"),
low.thresholds = c(500, 50000))

Next, we log-normalize counts for each cell, essentially to log counts per million (for reads) or counts per ten
thousand (UMIs). More precisely, we set

A
Nij=log |14+ M=<"2—],

where M = 10° for FACS and M = 10* for droplets. The log is base e. We chose those values of M to be
close to the average number of counts per cell.

tiss <- NormalizeData(object = tiss, scale.factor = 1e6)
Then we shift and scale the rows of the normalized matrix, so each gene has mean zero and variance one.
Xij = (Nij — i)/ o,

where p; is the mean of N;; and o; is the standard deviation of Nj;.

tiss <- ScaleData(object = tiss)

## [1] "Scaling data matrix"
##
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We select variable genes (those with high standardized log dispersion, given their mean), as they will be more
informative about differences between cell types in the population.

Concretely, the log dispersion d; of a gene 4 is d; = log(v;/m;), where v; is the variance of exp(N;;) and m;
is the mean of exp(N;;). (In other words, m; is 1 plus CPM.) We bin the genes into 20 equal-spaced bins
based on log(m;), then compute the mean and standard deviation of d; within each bin. The standardized
log dispersion d; is the dispersion d; shifted by the mean and rescaled by the standard deviation of the dj,
within its bin. We retain genes with d; > 0.5 and log(m;) > 0.1.

tiss <- FindVariableGenes(object = tiss, do.plot = TRUE,
x.high.cutoff = Inf, y.cutoff = 0.5, x.low.cutoff = 0.1)
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Average expression

Cells are projected onto a low-dimensional subspace using principal component analysis on the scaled
expression X of the variable genes.

tiss <- RunPCA(object = tiss, do.print = FALSE)
tiss <- ProjectPCA(object = tiss, do.print = FALSE)

We can visualize top genes in each principal component.
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We then project onto just the top principal components. This has the effect of keeping the major directions
of variation in the data and, ideally, supressing noise. A decent rule of thumb is to pick the elbow in the plot
below.

PCElbowPlot (object = tiss)
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Choose the number of principal components to use.

n.pcs = 11

Cluster

The clustering is performed on a shared-nearest-neighbors graph on the cells.

The shared-nearest-neighbors graph was constructed based on the Euclidean distance in the low-dimensional
subspace; cells are connected if their k-neighborhoods overlap. Indeed, let A(j) denote the k-nearest
neighborhood (k = 30) for a cell j. The shared-nearest-neighbor graph G has a vertex for each cell and an
edge of weight
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between cells j and k. Cells were clustered using a modified version of the Louvain method for modularity
maximization. The modularity has a resolution parameter ~,
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where A;; is the weighted adjacency matrix, k; and k; are the weighted degrees of cells ¢ and j, m is the
total weight of edges in the graph, ¢; denotes cluster membership, and 6(c;, ¢;) is 1 if ¢ and j are in the same
cluster, and 0 otherwise.


https://journals.aps.org/pre/abstract/10.1103/PhysRevE.74.016110

The resolution +y is a tuneable parameter in this analysis that sets the tradeoff between in-group connections
and between-group connections. High resolution favors smaller clusters.

# Set resolution
res.used <- 1

tiss <- FindClusters(object = tiss, reduction.type = '"pca", dims.use = 1:n.pcs,
resolution = res.used, print.output = O, save.SNN = TRUE)

We use tSNE solely to visualize the data.
tiss <- RunTSNE(object = tiss, dims.use = l:n.pcs, seed.use = 10, perplexity=30)

TSNEPlot(object = tiss, do.label = T, pt.size = 1.2, label.size = 4)
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Label clusters using marker genes

Check expression of genes useful for indicating cell type.

genes_hep = c('Alb', 'Ttr', 'Apoal', 'Serpinalc') #hepatocyte
genes_endo = c('Pecaml', 'Nrpl', 'Kdr','0it3') # endothelzal
genes_kuppfer = c('Emrl', 'Clec4f', 'Cd68', 'Irf7') # Kuppfer cells
genes_nk = c('Zap70', 'I12rb', 'Nkg7', 'Cxcr6') # Natural Killer cells
genes_b = c('Cd79a', 'Cd79pb', 'Cd74', 'Cd19') # B Cells

genes_all = c(genes_hep, genes_endo, genes_kuppfer, genes_nk, genes_b)

In the tSNE plots below, the intensity of each point represents the log-normalized gene expression IV;;.
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Dotplots show, for each cluster and gene, the fraction of cells with at least one read for the gene (circle size)
and the average scaled expression for that gene among the cells expressing it (circle color).
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The low but nonzero levels of Albumin present in all clusters is consistent with a small amount of leakage,
either through physical contamination or index hopping. Nevertheless, the absolute levels of expression
confirm a sharp difference between the hepatocyte clusters and the others.

Alb

3e+05 1

2e+05

1e+05

0e+00 A

Identity

To confirm the identity of a cluster, you can inspect the genes differentially expressed in that cluster compared
to the others.

clust.markers7 <- FindMarkers(object = tiss, ident.l1 = 7,
only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25)

The top markers for cluster 7 include histocompatibility markers H2-*, consistent with the expression of other



B-cell markers seen above.

head(clust.markers7)

#i# p_val avg_logFC pct.1 pct.2 p_val_adj
## H2-DMb2 9.768214e-101 7.042620 0.902 0.024 2.279999e-96
## Pou2afl 1.585456e-100 6.108999 0.732 0.006 3.700612e-96
## Spib 1.271751e-88 6.278530 0.707 0.010 2.968394e-84
## Cd19 1.240657e-87 7.018641 0.756 0.016 2.895818e-83
## H2-0Oa 6.025345e-85 5.833053 0.683 0.010 1.406376e-80
## H2-0b 1.236266e-83 5.860218 0.780 0.022 2.885569e-79

Using the markers, we can confidentaly label the clusters. We provide both a free annotation (where any
name can be used) and a cell ontology class. The latter uses a controlled vocabulary for easy comparison
between studies and different levels of the taxonomy.

tiss <- StashIdent(object = tiss, save.name = "cluster.ids")
cluster.ids <- c(0, 1, 2, 3, 4, 5, 6, 7, 8)

free_annotation <- c(
"endothelial cell",
"hepatocyte",
"hepatocyte",
"hepatocyte",
"hepatocyte",
"kuppfer",
"hepatocyte",

"B cell",
"NK/NKT cells")

cell_ontology_class <-c(
"endothelial cell of hepatic sinusoid",
"hepatocyte",
"hepatocyte",
"hepatocyte",
"hepatocyte",
"Kupffer cell",
"hepatocyte",
"B cell",
"natural killer cell")

tiss = stash_annotations(tiss, cluster.ids, free_annotation, cell_ontology_class)

Checking for batch effects

Color by metadata, like plate barcode, to check for batch effects. Here we see that the clusters are segregated
by sex.



TSNEPlot (object = tiss, do.return = TRUE, group.by = "mouse.id")
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Nevertheless, every cluster contains cells from multiple mice.

table(FetchData(tiss, c('mouse.id','ident')) %>% droplevels())

## ident

## mouse.id 0 1 2 3 4 5 6 7 8
## 3_11 M 160 0 59 29 51 47 0 31 32
## 3_56_F 0 46 0 11 0 0 25 0 0
## _57_F 0 46 0 5 0 0 28 0 0
## 9 M 22 1 32 37 20 14 1 10 7

Final coloring

Color by cell ontology class on the original tSNE.

TSNEPlot (object = tiss, group.by = "cell_ontology_class")
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Save the Robject for later

#filename = here('00_data_tingest', '04_tissue_robj_generated’,

# pasteO("facs_", organ_of_interest, "_seurat_tiss.Robj"))
#print (filename)

#save(tiss, file=filename)

# To reload a saved object

#filename = here('00_data_tingest', 'O4_tissue_robj_generated’,

# pasteO("facs_", organ_of_interest, "_seurat_subtiss.Robj"))
#load(ftle=filename)

Export the final metadata

#save_annotation_csv(tiss, organ_of_interest, "facs")
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